

Fourth Semester B.E. Degree Examination, June/July 2013 Signals and Systems

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. Distinguish between:
 - i) Even and odd signals
 - ii) Periodic and non-periodic signals
 - iii) Energy and power signals.

(06 Marks)

b. Sketch the following signals

$$x(n) = \delta(n)$$

$$x(n) = -2u(-n)$$

$$x(t) = (t - 1) u(t)$$

$$x(t) = 2u(t-1) - 2u(t-3)$$

(04 Marks)

c. For the signal $x(n) = \{1, 2, 3, 4\}$, sketch the signal x(-2n + 1).

(04 Marks)

- d. Determine whether the system y(n) = x(n) + 3u(n + 1) is
 - i) Linear ii) Time invariant iii) Causal iv) Memory less v) Stable. (06 Marks)
- 2 a. Derive the expression for convolution sum.

(04 Marks)

- b. Convolve the signals $x_1(n) = 4\delta(n) + 2\delta(n-1) + 3\delta(n-2) + 4\delta(n-3)$ and $x_2(n) = \delta(n) + 2\delta(n-1) + 3\delta(n-2)$. (06 Marks)
- c. State and prove associative property of convolution integral.

(06 Marks)

- d. Find the response y(t) = x(t) * h(t) for the signal $x(t) = e^{at} u(t)$; a > 0 and impulse response h(t) = u(t).
- 3 a. For each of the impulse response listed below, determine whether the corresponding system is i) Causal ii) Memory less iii) Stable. i) $h(t) = e^{-2|t|}$ ii) $h(t) = e^{2t} u(t-1)$. (06 Marks)
 - b. Evaluate the forced response of the system

$$y'(t) + 2y(t) = e^{-2t}u(t).$$

(04 Marks)

c. Solve the homogeneous difference equation (find natural response)

$$y(n) + y(n-1) + \frac{1}{2}y(n-2) = 0$$
 with $y(-1) = -1$ and $y(-2) = 1$.

(06 Marks)

Draw direct for m - I and direct form - II implementations for the system

$$\frac{dy(t)}{dt} + 5y(t) = 3x(t).$$

- 4 a. State and prove the following properties of Fourier series
 - i) Time –shift
 - ii) Frequency -shift.

(06 Marks)

b. Evaluate the DTFs representation for the signal

$$x(n) = \sin\left(\frac{4\pi}{21}n\right) + \cos\left(\frac{10\pi}{21}n\right) + 1$$

Sketch the magnitude and phase spectra.

(08 Marks)

c. For the signal $x(t) = \sin w_0 t$, find the Fourier series and draw its magnitude spectrum.

(06 Marks)

PART - B

- 5 a. State and prove the following properties of DTFT
 - i) Frequency shift
 - ii) Frequency differentiation.

(06 Marks)

- b. Find the FT of the following signals
 - i) $x(t) = \delta(t)$
 - ii) $x(t) = e^{-at} u(t)$; a > 0.

(06 Marks)

c. Find the inverse FT of

$$x(jw) = \frac{jw+1}{(jw)^2 + 5jw + 6}.$$

(08 Marks)

6 a. Find the impulse response of

$$\frac{d^{2}}{dt^{2}}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = 2\frac{d}{dt}x(t) + x(t)$$

b. By applying Fourier transform and IFT.

(08 Marks)

State and prove sampling theorem for low pass signal.

(08 Marks)

- c. Consider the analog signal $x(t) = 3 \cos 50\pi t + 10 \sin 300\pi t \cos 100\pi t$. What is the Nyquist rate for this signal? (04 Marks)
- 7 a. State and prove:
 - i) Linearity
 - ii) Differentiation in z domain, properties of z transform.

(06 Marks)

b. Determine the z – transformation of

$$x(n) = \{1, 2, 3\}$$

$$x(n) = (2)^n u(n)$$

$$x(n) = \delta(n+2)$$

$$x(n) = -(3)^n u(-n-1).$$

(08 Marks)

c. Find out the inverse z – transform of

$$x(z) = \frac{1}{1-4z^{-1}}$$
, RoC: $|z| > |4|$.

Using power series expansion.

(06 Marks)

8 a. Find the unilateral z – transform of

$$x(n) = \{1, 2, 3, 4\}$$

$$y(n) = a^n u(n + 1)$$
; $a < 1$.

(06 Marks)

b Find the difference – equation description for a system with transform function :

$$H(z) = \frac{y(z)}{x(z)} = \frac{5z + 2}{z^2 + 3z + 2}.$$

(06 Marks)

Consider the system described the difference question y(n) - 0.9y(n-1) = x(n). Find output if the input is x(n) = u(n) and the initial condition on the output is y(-1) = 2. (08 Marks)

* * * * *